,

Generador de Energía con Efecto de Sombra

Generador de Energía con Efecto de Sombra

Los investigadores han creado un dispositivo llamado ‘generador de energía con efecto de sombra’ que utiliza el contraste en la iluminación entre las áreas iluminadas y sombreadas para generar electricidad. Este novedoso concepto abre nuevos enfoques para aprovechar las condiciones de iluminación interior para alimentar la electrónica.

Las sombras a menudo se asocian con oscuridad e incertidumbre. Ahora, los investigadores de la Universidad Nacional de Singapur (NUS) están dando un giro positivo a las sombras al demostrar una forma de aprovechar este efecto óptico común pero a menudo ignorado para generar electricidad. Este novedoso concepto abre nuevos enfoques para generar energía verde en condiciones de iluminación interior para alimentar la electrónica.

Un equipo del Departamento de Ciencia e Ingeniería de Materiales de NUS, así como del Departamento de Física de NUS, creó un dispositivo llamado generador de energía con efecto de sombra (SEG en sus silgas en ingles), que utiliza el contraste en la iluminación entre las áreas iluminadas y sombreadas para generar electricidad. 

“Las sombras son omnipresentes, y a menudo las damos por sentadas. En aplicaciones fotovoltaicas u optoelectrónicas convencionales donde se utiliza una fuente de luz constante para alimentar dispositivos, la presencia de sombras es indeseable, ya que degrada el rendimiento de los dispositivos. En este trabajo, capitalizamos el contraste de iluminación causado por las sombras como fuente indirecta de energía. El contraste en la iluminación induce una diferencia de voltaje entre las secciones sombreadas e iluminadas, dando como resultado una corriente eléctrica. Este concepto novedoso de recolectar energía en presencia de sombras no tiene precedentes “, explicó el líder del equipo de investigación, Profesor Asistente Tan Swee Ching, quien es del Departamento de Ciencia e Ingeniería de Materiales del NUS.

Los dispositivos electrónicos móviles como teléfonos inteligentes, anteojos inteligentes y relojes electrónicos requieren una fuente de alimentación eficiente y continua. Como estos dispositivos se usan tanto en interiores como en exteriores, las fuentes de energía portátiles que podrían aprovechar la luz ambiental pueden mejorar potencialmente la versatilidad de estos dispositivos. 

Si bien las células solares disponibles en el mercado pueden desempeñar este papel en un entorno exterior, su eficiencia de recolección de energía disminuye significativamente en condiciones interiores donde las sombras son persistentes. Este nuevo enfoque para eliminar la energía de la iluminación y las sombras asociadas con intensidades de poca luz para maximizar la eficiencia de la recolección de energía es emocionante y oportuno.

Para abordar este desafío tecnológico, el equipo de NUS desarrolló un SEG de bajo costo y fácil de fabricar para realizar dos funciones: (1) convertir el contraste de iluminación de las sombras de sombras parciales en electricidad, y (2) para servir Sensor de proximidad alimentado para controlar los objetos que pasan.

Pruebas con el Generador de Energía con Efecto de Sombra

El Generador de Energía con Efecto de Sombra comprende un conjunto de celdas SEG dispuestas en una película de plástico flexible y transparente. Cada celda del SEG es una película delgada de oro depositada en una oblea de silicio. Cuidadosamente diseñado, el SEG puede fabricarse a un costo menor en comparación con las células solares de silicio comerciales. Luego, el equipo realizó experimentos para probar el rendimiento del SEG en la generación de electricidad y como un sensor autoalimentado.

“Cuando toda la celda SEG está bajo iluminación o en la sombra, la cantidad de electricidad generada es muy baja o nula. Cuando una parte de la celda SEG está iluminada, se detecta una salida eléctrica significativa.

También encontramos que la superficie óptima el área para la generación de electricidad es cuando la mitad de la celda SEG está iluminada y la otra mitad en la sombra, ya que esto proporciona suficiente área para la generación y recolección de carga respectivamente “, dijo el líder del co-equipo, el profesor Andrew Wee, del Departamento de Física del NUS .

Basado en experimentos de laboratorio, el SEG de cuatro celdas del equipo es dos veces más eficiente en comparación con las celdas solares de silicio comerciales, bajo el efecto de sombras cambiantes. La energía cosechada del SEG en presencia de sombras creadas en condiciones de iluminación interior es suficiente para alimentar un reloj digital (es decir, 1,2 V).

Además, el equipo también demostró que el Generador de Energía con Efecto de Sombra puede servir como un sensor autoalimentado para monitorear objetos en movimiento. Cuando un objeto pasa por el SEG, proyecta una sombra intermitente en el dispositivo y activa el sensor para registrar la presencia y el movimiento del objeto.

Hacia un menor costo y más funcionalidades

El equipo de seis miembros tardó cuatro meses en conceptualizar, desarrollar y perfeccionar el rendimiento del dispositivo. En la siguiente fase de investigación, el equipo de NUS experimentará con otros materiales, además del oro, para reducir el costo de la SEG.

Los investigadores de NUS también están estudiando el desarrollo de sensores autoalimentados con funcionalidades versátiles, así como SEG portátiles que se pueden conectar a la ropa para cosechar energía durante las actividades diarias normales. Otra área prometedora de investigación es el desarrollo de paneles SEG de bajo costo para la recolección eficiente de energía de la iluminación interior.

Si quieres recibir en tu celular esta y otras informaciones

emisiones de gei

,

Turbina Eólica de Madera en Suecia

turbina eólica de madera

La empresa sueca de ingeniería y diseño industrial Modvion ha erigido la primera torre de turbina eólica de madera en una isla en las afueras de Gotemburgo, Suecia. Fue un proyecto piloto para el Centro Sueco de Tecnología Eólica y se utilizará con fines de investigación.

Modvion desarrolla diseños de turbinas eólicas modulares en madera de ingeniería renovable. La compañía afirma que su tecnología da como resultado un menor costo y una instalación simplificada de torres que exceden los 120 metros.

Modvion se asoció con la compañía de glulam Moelven Töreboda para construir la torre de turbina eólica de madera, que tiene 30 metros de altura. Debido a que las dos compañías construyeron la torre de forma modular, y la madera es más ligera que el acero, es más fácil de transportar, por lo que las futuras torres se pueden construir más altas.

turbina eólica de madera

Johan Åhlén, CEO de Moelven Töreboda, dijo:

La madera tiene propiedades fantásticas y necesitamos construir mucho más en madera si queremos cumplir con los objetivos climáticos. Para nosotros, es muy inspirador participar en este proyecto piloto en el que hemos podido utilizar madera renovable en un diseño para la producción de energía renovable.

Las primeras torres comerciales de madera se construirán a partir de 2022. Modvion ha firmado declaraciones de intenciones con la empresa de energías renovables Varberg Energi para una torre de 110 metros y el constructor de turbinas eólicas Rabbalshede Kraft para 10 torres de al menos 150 metros de altura.

Otto Lundman, CEO de Modvion, dijo:

Este es un gran avance que allana el camino para la próxima generación de turbinas eólicas. La madera laminada es más resistente que el acero con el mismo peso y al construir módulos, las turbinas eólicas pueden ser más altas. Al construir en madera, también reducimos las emisiones de dióxido de carbono en la fabricación.

Además, el dióxido de carbono absorbido por los árboles a medida que crecen se almacena en las torres de madera, lo que significa que las turbinas eólicas son climáticamente neutrales desde el principio.

 

Si quieres recibir en tu celular esta y otras informaciones

emisiones de gei

,

Propulsión a Chorro de Plasma: Eliminando Combustibles Fósiles

propulsión a chorro de plasma

Los humanos dependen de los combustibles fósiles como su principal fuente de energía, especialmente en el transporte. Sin embargo, los combustibles fósiles son insostenibles e inseguros, ya que sirven como la mayor fuente de emisiones de gases de efecto invernadero y provocan efectos respiratorios adversos y devastación debido al calentamiento global. Un equipo de investigadores del Instituto de Ciencias Tecnológicas de la Universidad de Wuhan ha demostrado un dispositivo prototipo que utiliza aire de microondas para propulsión a chorro de plasma.

“La motivación de nuestro trabajo es ayudar a resolver los problemas del calentamiento global debido al uso que hacen los humanos de motores de combustión de combustibles fósiles para impulsar maquinaria, como automóviles y aviones”, dijo el autor Jau Tang, profesor de la Universidad de Wuhan. “No hay necesidad de combustibles fósiles con nuestro diseño y, por lo tanto, no hay emisión de carbono que cause efectos de efecto invernadero y calentamiento global”.

Más allá de sólidos, líquidos y gases, el plasma es el cuarto estado de la materia, que consiste en un agregado de iones cargados. Existe naturalmente en lugares como la superficie del sol y los rayos de la Tierra, pero también se puede generar. Los investigadores crearon una propulsión a chorro de plasma al comprimir el aire a altas presiones y usar un microondas para ionizar la corriente de aire a presión.

Este método difiere de los intentos anteriores para crear propulsores de chorro de plasma de una manera clave. Otros propulsores de chorro de plasma, como la sonda espacial Dawn de la NASA, usan plasma de xenón, que no puede superar la fricción en la atmósfera de la Tierra y, por lo tanto, no son lo suficientemente potentes para su uso en el transporte aéreo. En cambio, el propulsor de chorro de plasma de los autores genera el plasma de alta temperatura y alta presión in situ utilizando solo aire inyectado y electricidad.

El prototipo de dispositivo de propulsión a chorro de plasma puede levantar una bola de acero de 1 kilogramo sobre un tubo de cuarzo de 24 milímetros de diámetro, donde el aire de alta presión se convierte en un chorro de plasma al pasar a través de una cámara de ionización de microondas. A escala, la presión de empuje correspondiente es comparable a la de un motor de avión comercial.

Al construir una gran variedad de estos propulsores con fuentes de microondas de alta potencia, el diseño del prototipo se puede ampliar a un jet de tamaño completo. Los autores están trabajando para mejorar la eficiencia del dispositivo hacia este objetivo.

“Nuestros resultados demostraron que dicho motor a reacción basado en plasma de aire de microondas puede ser una alternativa potencialmente viable al motor a reacción convencional de combustible fósil”, dijo Tang.

Si quieres recibir en tu celular esta y otras informaciones

emisiones de gei

,

Las Chimeneas Solares ayudan a la Seguridad contra Incendios

chimeneas solares

Un elemento imprescindible en el diseño de edificios ecológicos, las chimeneas solares pueden reducir los costos de energía hasta en un 50%. Ahora la investigación revela que también podrían ayudar a salvar vidas en un incendio en un edificio.

En una primicia mundial, los investigadores diseñaron una chimenea solar optimizada para el ahorro de energía y la seguridad contra incendios, como parte de las características sostenibles de un nuevo edificio en Melbourne, Australia.

El modelado muestra que la chimenea solar especialmente diseñada aumenta radicalmente la cantidad de tiempo que las personas tienen para escapar del edificio durante un incendio, extendiendo el tiempo de evacuación segura de aproximadamente dos minutos a más de 14 minutos.

Una chimenea solar es un sistema pasivo de calentamiento y enfriamiento solar que aprovecha la ventilación natural para regular la temperatura de un edificio.

Con un estimado del 19% de los recursos energéticos del mundo destinados a calefacción, ventilación y refrigeración de edificios, la integración de chimeneas solares en nuevas construcciones y la modernización de las estructuras existentes ofrece un gran potencial para reducir este enorme costo ambiental.

En el nuevo proyecto, una colaboración entre la Universidad RMIT y la ciudad de Kingston, los investigadores diseñaron una chimenea solar para maximizar su eficiencia para ventilar aire fresco y aspirar humo de un edificio en caso de incendio.

El investigador Dr. Long Shi dijo que las chimeneas solares tienen credenciales ambientales bien establecidas, pero su potencial para mejorar la seguridad contra incendios no había sido explorado.

“En una situación de emergencia en la que cada segundo cuenta, es fundamental dar a las personas más tiempo para escapar de manera segura”, dijo Shi.

“Nuestra investigación demuestra que las chimeneas solares ofrecen poderosos beneficios para la seguridad de las personas y el medio ambiente.

“Cumplir con dos funciones importantes podría impulsar la ya rentable rentabilidad de esta tecnología sostenible.

“Esperamos que nuestros hallazgos inspiren más inversión y desarrollo de chimeneas solares en Australia y en todo el mundo”.

La alcaldesa de Kingston, Georgina Oxley, dijo que el Consejo estaba emocionado de ser parte del innovador proyecto.

“Crear formas nuevas e innovadoras para reducir el consumo de energía en el diseño de nuestro edificio es una prioridad para el Consejo”, dijo Oxley.

“La chimenea solar que se instaló en el nuevo y moderno Pabellón de Reserva Mentone no solo nos permite aprovechar la energía verde limpia para calentar y enfriar el edificio, ayudando al Consejo a lograr sus objetivos ambientales, sino que también tiene potencial para salvar vidas en caso de incendio. Este es un diseño verdaderamente notable “.

Si bien los cálculos en torno al aumento de 6 veces en el tiempo de evacuación segura fueron específicos del nuevo edificio, una investigación previa realizada por el equipo de la Escuela de Ingeniería de RMIT ha confirmado que las chimeneas solares pueden lograr con éxito ambas funciones: ventilación y agotamiento del humo.

El aire caliente sube: como funciona una chimenea solar

El enfoque de diseño pasivo detrás de las chimeneas solares funciona según el conocido principio de que el aire caliente siempre sube.

Las chimeneas solares modernas generalmente presentan una pared de vidrio junto a una pared pintada de negro, para maximizar la absorción de la radiación solar. Las ventilas en la parte superior e inferior controlan el flujo de aire dentro y fuera de la chimenea para calentar o enfriar.

A medida que el sol calienta la chimenea, esto calienta el aire dentro de ella.

El aire caliente se eleva y sale por la parte superior de la chimenea, lo que atrae más aire en la parte inferior, impulsando la ventilación a través de un edificio para enfriarlo naturalmente.

Cuando hace frío afuera, la chimenea se puede cerrar, para dirigir el calor absorbido de vuelta al edificio y mantenerlo caliente.

Es un concepto ingeniosamente simple que es relativamente barato de actualizar y no agrega casi ningún costo adicional a una nueva construcción, pero puede reducir el consumo de energía.

Reduce el humo, aumenta la seguridad

Durante un incendio, el mismo principio, el aire caliente se eleva, permite que la chimenea solar aspire el humo del edificio.

Menos humo significa mejor visibilidad, temperaturas más bajas y monóxido de carbono reducido, todo lo cual contribuye a aumentar la cantidad de tiempo que las personas tienen para evacuar de manera segura.

Para comprender exactamente cuánto tiempo de evacuación podría proporcionar una chimenea solar para un edificio específico, debe modelar para ese diseño exacto, dijo Shi.

“Esto diferirá de un edificio a otro, pero sabemos que cualquier tiempo extra es valioso y mejora la seguridad contra incendios, lo que en última instancia podría ayudar a salvar vidas”, dijo.

La nueva investigación ofrece una guía técnica para optimizar el diseño y la ingeniería de chimeneas solares en edificios reales, para ampliar su aplicación en las dos funciones.

Si quieres recibir en tu celular esta y otras informaciones

emisiones de gei

, ,

Producción de Biobutanol: Nuevos Avances Científicos

biobutanol

Una colaboración internacional de investigación ha dado un paso importante hacia la fabricación comercialmente viable de biobutanol, un alcohol cuyo fuerte potencial como combustible para motores de gasolina podría allanar el camino lejos de los combustibles fósiles.

El avance clave es el desarrollo de un nuevo marco orgánico de metal, o MOM, que puede separar eficientemente el biobutanol del caldo de biomasa fermentada necesaria para la producción del combustible. Los hallazgos se publicaron hoy en el Journal of the American Chemical Society .

Los investigadores ahora buscan asociarse con la industria para tratar de ampliar el método de separación utilizando el nuevo marco orgánico de metal, dice el correspondiente Kyriakos Stylianou del estudio de la Universidad Estatal de Oregón.

Si se escala bien, podría ser un hito importante en el camino hacia la no dependencia de los combustibles fósiles.

“Los biocombustibles son una alternativa de combustible sostenible y renovable, y el biobutanol ha surgido recientemente como una opción atractiva en comparación con el bioetanol y el biodiesel”, dijo Stylianou, investigador de química en la Facultad de Ciencias de la OSU. “Pero separarlo del caldo de fermentación ha sido un obstáculo significativo en el camino hacia una fabricación económicamente competitiva”.

El butanol, también conocido como alcohol butílico, está más estrechamente relacionado con la gasolina que el etanol y puede sintetizarse a partir del petróleo o fabricarse a partir de biomasa. El bioetanol (alcohol etílico) es un aditivo común para biocombustibles, pero contiene significativamente menos energía por galón que la gasolina y también puede ser dañino para los componentes del motor.

El proceso de creación de biobutanol se conoce como fermentación ABE: acetona-butanol-etanol. Produce un caldo acuoso que alcanza un máximo del 2% en peso de butanol. De ahí la necesidad de una herramienta de separación que pueda funcionar bien en un ambiente acuoso y también en presencia de solventes orgánicos, en este caso acetona, que es un ingrediente clave en productos como quitaesmaltes y diluyentes de pintura.

Stylianou y sus colegas en universidades de Suiza, China, Reino Unido y España sintetizaron un nuevo marco orgánico de metal, basado en iones de cobre y ligandos de carborano-carboxilato, conocido como mCB-MOF-1. El MOM puede extraer butanol del caldo de fermentación, mediante adsorción, con mayor eficiencia que la destilación o cualquier otro método existente.

El MOM es estable en solventes orgánicos, en agua caliente y en soluciones acuosas ácidas y básicas.

“Los biocombustibles pueden aumentar la seguridad y el suministro de energía y también pueden ser una gran parte de un plan de energía que realmente captura y almacena carbono, lo que sería enorme para cumplir los objetivos de lucha contra el cambio climático”, dijo Stylianou. “El biobutanol es mejor que el bioetanol por una variedad de razones, incluyendo que es casi tan denso en energía como la gasolina y se mezcla bien con la gasolina. Y el biobutanol también puede potencialmente reemplazar al butanol sintético como un precursor esencial para una gama de químicos industriales”.

Si quieres recibir en tu celular esta y otras informaciones

emisiones de gei

 

 
,

Proyecto del Centro Internacional de Arquitectura Sostenible

Centro de Interpretación de Arquitectura Sostenible

El SAIC o Centro Internacional de Arquitectura Sostenible en sus siglas en inglés, es un proyecto enfocado en desarrollar comunidades sostenibles de forma holística mediante la formación profesional y la acción.

Desarrollado por el arquitecto Yunes David Mansilla de YMCWORKSHOP, SAIC aspira a ser la realidad de un sueño recurrente que responde a la posibilidad de vivir más allá del asfalto, el cemento y la polución. La responsabilidad del Centro Internacional de Arquitectura Sostenible es vital para nuestro devenir. Maxime cuando sabemos que el 40% de las emisiones de gases de efecto invernadero a nivel mundial provienen de la construcción de los cuales ¾ partes se la lleva la explotación del edificio y un 11% en los materiales de construcción, siendo de este dato un 9% proveniente del acero y del hormigón.

Centro Internacional de la Arquitectura Sostenible

Con estos datos, el Centro Internacional de Arquitectura Sostenible debe enseñar y crear modelos de cero emisiones tanto en su concepción como en su vida útil. Implica de forma inherente la promoción de la enseñanza de soluciones constructivas y tecnológicas que promuevan este fin. El Centro tiene pues el objetivo transversal de demostrar su autosuficienciaen cuanto al abastecimiento de agua potable, energético y nutricional. El proyecto debe ser a su vez un ejemplo de modelo salubre de crecimiento económico, inclusivo y sostenido. Y para ello deberá demostrar 4 objetivos:

  1. Los parámetros de sostenibilidad mejoran la arquitectura.
  2. Sostenibilidad y asequibilidad no están reñidos.
  3. Viabilidad a corto, medio y ante todo a largo plazo.
  4. Creación de un Hubdonde personas e instituciones se reúnen para sacar adelante proyectos bajo el mismo enfoque.

¿Hasta cuándo nuestra preciada tierra va a permitirnos cometer crímenes ecológicos? Es tiempo de vivir alineados a la tierra y no alienados a ella.

Si creemos en esta máxima, no creo que debamos preguntarnos más tiempo si este proyecto se trata de un proyecto utópico o incluso de una necesidad sino de la única vía que nos queda. Una vía que debe convertirse en el referente para la generación inmediatamente futura en harmonía con el medio ambiente.

Arquitectura del Centro de Interpretación de Arquitectura Sostenible

El edificio se ha llamado Armadillo en honor al dasipódido. La configuración bebe de este animal del orden Cingulata. Cuenta,como éste, con una estructura dorsal en la que se alternan en filas transversales de cristal y aplacados de composite de madera. Ambos se apoyan en vigas de madera laminadas curvas. El armadillo sigue un ritmo de yuxtaposiciones fluidas,creciendo y menguando tanto en horizontal como en altura sin ángulos rectos.

 

Uno de los objetivos más importantes del centro Armadillo es la fusión entre el exterior y el interior. Aquí el diluir fronteras es tanto metafóricocomo físico.

Centro Internacional de la Arquitectura Sostenible

La luz natural continua de cada franja cruza el edificio de lado a lado creando halos de luz tamizada gracias a la protección ultravioleta de tintado del vidrio con baja transmitancia. A notar que tanto el vidrio como el marco se han concebido en un 80% de reciclaje. En el Centro Internacional de la Arquitectura Sostenible entendemos que el diseño y la sostenibilidad no están reñidos con el bajo coste. Y que en la ausencia de medios económicos el ingenio se agudiza.

 

De ahí que estas escamas estén formadas por pallets de construcción que se rellenan de fibra de madera y se recubren de panelado de madera termotratada al interior y de paneles composite al exterior.

Otro de los objetivos del Centro es entender las soluciones constructivas a bajo coste dando las armas con las que luchar contra el endeudamiento hipotecario de la población que en 2 generaciones se ha multiplicado por 4, teniendo una media de 30-40 años.

El edificio tiene que demostrar a los propios alumnos y asistentes que el cambio empieza ahí mismo, que es viable y que es bonito. Debe hacer sentir orgullosos a sus ocupantes.

Los modelos arquitectónicos tienen un valor añadido al resultado formal ya que cumplen además con los principios de hightech at affordablecost:

  • Reciclaje,
  • Técnicas tradicionales mejoradas con el conocimiento y mejoras actuales.
  • Uso de materiales ecológicos vernáculos.

Estos 3 parámetros deben ser usados con técnicas habituales de autoconstrucción evitando maquinaria pesada, procesos de manufactura contaminante y transportes de larga distancia.

Los posibles usos de SAIC

SAIC se caracteriza por tener un Sistema compositivo abierto. Es decir, sumamente flexible a la hora de albergar espacios de distintos usos con requerimientos de superficie diversos.

En cuanto al programa, SAIC cuenta con 4000m2, entre los que encontramos espacios tales como cuenta con una librería, auditorio interior- exterior, diluyendo los límites bajo una óptica de pensamiento horizontal y democrático. Zonas de trabajo en grupo con espacios compartidos, cafetería, restaurante, aulas, laboratorio de materiales, administración, fuentes exteriores y estanques naturales de reciclaje de aguas con espacios de reunión al exterior. 
Y es que el centro estará activamente ligado a la tierra utilizando las fuentes de energía de agua luz y viento para abastecerlo de los requerimiento higrotérmicos.

Entre los posibles proyectos de explotación de la comunidad SAIC se encuentran:

EJE 1: Formación profesional:

  • La arquitectura sostenible integral es el eje principal del centro con enseñanza reglada de formación profesional que va desde el desarrollo urbanístico, obra nueva y rehabilitación, soluciones constructivas no contaminantes desde un punto de vista eminentemente práctico. Sin embargo, se consideran igualmente los temas ligados a ésta como son la independencia energética, el modelo de desarrollo y de hábitat social y el centro de permacultura ligado al centro.
  • Centro semilla de iniciativas sostenibles: Igualmente importante es el centro como lugar de encuentro de profesionales mediante la promoción de iniciativas de organizaciones dedicadas a los objetivos del desarrollo sostenible con las instituciones públicas y privadas. Un puente entre las empresas, asociaciones, la administración y la financiación. En el campo de la arquitectura por ejemplo se unirían la AECID, Ecoaldeas, arquitectos sin fronteras, revistas como Eco-habitat, UN-Habitat, Instituto Torroja, empresas dedicadas a la eco-construcción, etc. Con el objetivo de promover y hacer realidad los proyectos en un punto de referencia aunando a los actores clave en un mismo espacio actualmente dispersos.
  • SAIC también pretende ser un centro de reconocimiento con premios anuales según distintas categorías como pueden ser: energético, desarrollo social, diseño sostenible, permacultura, buenas prácticas en la obra nueva y rehabilitación, etc.

Centro Internacional de la Arquitectura Sostenible

EJE 2: GREEN SCHOOL:

  • Uno de los lemas del colegio será: “Sé el cambio que el mundo sostenible necesita”

El centro acogerá el primer “Green School”en España que seguirá el sistema educativo del prestigioso centro con sede en Bali, Indonesia.

El centro de educación Armadillo incluye un colegio de primaria y secundaria, así como campamentos de corta duración. La enseñanza del pensamiento verde se centra en cómo vivir sin hacer daño a la madre tierra. Los niños serán capaces de labrarse un futuro con las herramientas necesarias para ser autosuficientes de manera sostenible.

Economía circular, cero basuras, compost, reciclaje, manufactura de materiales y otros bienes, generación de energía verde, productos alimentarios bio, combustibles no contaminantes, son algunas de las enseñanzas además de las regladas según el ministerio de educación.

Además, se fomentará la importancia de los valores de la familia y la ética generacional teniendo en cuenta la crisis demográfica sin precedentes que sufre España con la menor natalidad mundial.

Como base de la educación sostenible y conservación ambiental, entendemos que la revolución verde debe ser arraigada desde edades tempranas en niños que disfruten el proceso educativo. Los líderes verdes deben tener el poder desde una enseñanza práctica y holística.

Inteligencia emocional, creatividad y educación física son otros de los pilares de la enseñanza. Pilares que incluyen a todos los niños en una estructura horizontal donde el trabajo en equipo se refuerce desde la individualidad.

Centro Internacional de la Arquitectura Sostenible

En la actualidad, nuestro modo de vida es demandante de la tierra y no proveedores a ésta. Desertificamos a ritmo de 10 millones de Ha/año, emitimos 25 Billones de toneladas de CO2/año, y perdemos 4 millones de Ha/año de bosques, y se pierde 5 millones de Ha/año de tierra cultivable debido a la erosión. SAIC debe servir de modelo persé fomentando justamente lo contrario. Niños y adultos deben estar motivados por el entorno en el cual se forman.

El planteamiento propuesto para cada uno de los retos se abordará de la siguiente manera (según los colegios Acho):

  • Comité
  • Auditoría :Desperdicio energético, basura no clasificada, falta de biodiversidad.
  • Informar&Involucrar
  • Eco – código :Crecer>Reciclar>Reducir en economía circular

La energía en el Centro Internacional de Arquitectura Sostenible

Energéticamente, el lema en SAIC es: ¨No demandes más energía de la que puedas crear. Nada a expensas de la madre tierra¨. Porque la mejor energía es la que nunca se consume. 

SAIC tendrá un concepto grid off. La autosuficiencia energética será uno de los pilares de todo el desarrollo partiendo del principio del ¨off thegrid¨ de las redes tradicionales de electricidad, saneamiento y agua potable.

Al no ser un devorador energético, la demanda energética será aportada en su totalidad por fuentes renovables tales como paneles solares, molinos de viento, baños secos y compost (evitando la energía y agua necesarias de plantas de depuradoras) o energía calorífica por geotermia, creación de gas por medio de fosas sépticas tanto húmedas como secas, haciendo posible que el peso repercutido de las instalaciones en el proyecto no supongan un coste tras el periodo de retorno estimado en 7 años de la inversión inicial.

Un centro, en definitiva, donde la arquitectura se redefine y conduce al consumo responsable.

La superficie necesaria para la producción energética y procesado de deshechos será de alrededorde 1000 m2 la cual tendrá poco impacto visual ya que estará integrada al paisajismo.

Redefinamos pues los siguientes términos:

  • Consumidor de recursos por eficiencia y reciclaje en los recursos.
  • Endeudamiento de por vida por autosuficiencia de por vida
  • Energético dependiente por autoproducción energética.
  • Emisor de dióxido de carbono por balance energético 0.

De la utopía a la realidad. En busca de la inversión perdida.

Para este modelo de negocio participativo, te invitamos a formar parte de este sueño excitante y ser miembros fundadores de esta forma de entender la vida. ¿Te gustaría unirte a nosotros?

Si te interesa participar en la creación del proyecto Armadillo ten en cuenta que participarás en el primer centro de enseñanza sobre soluciones arquitectónicas y energéticas para un mundo construido mejor. Y en la construcción del primer Green School en España. Todo en una misma localización.

Un proyecto en donde los cursos se llevarán a cabo por profesionales en las distintas ramas de la arquitectura bioclimática. Y de los profesores punteros en la “enseñanza verde” de primaria y secundaria respectivamente.

De la misma manera, el proyecto es de gran interés para aquellas personas físicas o jurídicas interesadas en desarrollar sus proyectos ya que el Centro de Interpretación de Arquitectura Sostenible apoyará aquéllas misiones que cumplan las premisas. En términos de bioconstrucción, acompañará a desarrollar colaboraciones con instituciones y organizaciones reconocidas.

Las principales acciones a nivel profesional se centrarán en:

  • SAIC como centro de postgrado, formación profesional y grado master en bioconstrucción y habitabilidad básica.
  • SAIC como centro de diseño arquitectónico sostenible
  • SAIC como centro de productos y materiales de construcción ecológicos
  • SAIC como centro de promoción y ejecución de proyectos sostenibles
  • SAIC como centro de premios por iniciativas y proyectos sostenibles

Como inversor participarás en un lugar donde aprenderás sobre sostenibilidad y soluciones asequibles, sabiendo como ejecutar con tus propias manos en la autoconstrucción o el testado de materiales. Y para ello, se contará con alianzas con universidades, laboratorios, empresas de control de calidad, etc. Un polo en definitiva, donde se hagan realidad colaboraciones y uniones temporales de empresa en el lanzamiento de nuevos proyectos.

Únete a nosotros en una experiencia única en contacto con la naturaleza donde se desmantelen las fronteras físicas y mentales. Empresarios de un futuro más brillante donde el respeto por la ecología prevalezca sobre factores económicos.

Como dice el Viejo dicho Indo americano: “No heredamos de nuestros ancestros la tierra, sino que la tomamos prestada para dejársela a nuestros descendientes”.

 

 

 

Si quieres recibir en tu celular esta y otras informaciones

emisiones de gei

 

 
, ,

Led Ultravioleta que Descontamina Superficies

led ultravioleta

A medida que COVID-19 continúa devastando las poblaciones mundiales, el mundo se centra singularmente en encontrar formas de combatir el nuevo coronavirus. Eso incluye el Centro de Electrónica de Iluminación y Energía de Estado Sólido de UC Santa Bárbara (SSLEEC) y las compañías miembros. Los investigadores están desarrollando LED ultravioleta que tienen la capacidad de descontaminar superficies, y potencialmente aire y agua, que han estado en contacto con el virus SARS-CoV-2.

“Una aplicación importante es en situaciones médicas: la desinfección de equipos de protección personal, superficies, pisos, dentro de los sistemas de HVAC, etc.”, dijo el investigador doctoral de materiales Christian Zollner, cuyo trabajo se centra en el avance de la tecnología LED de luz ultravioleta profunda para el saneamiento y fines de purificación Agregó que ya existe un pequeño mercado para productos de desinfección UV-C en contextos médicos.

De hecho, últimamente se ha prestado mucha atención al poder de la luz ultravioleta para inactivar el nuevo coronavirus. Como tecnología, la desinfección con luz ultravioleta ha existido por un tiempo. Y aunque práctica, la eficacia a gran escala contra la propagación del SARS-CoV-2 aún no se ha demostrado. La luz ultravioleta es muy prometedora: la empresa miembro de SSLEEC, Seoul Semiconductor, a principios de abril informó de una “esterilización del 99,9% del coronavirus (COVID-19) en 30 segundos” con sus productos LED UV. Su tecnología se está adoptando actualmente para uso automotriz, en lámparas LED UV que esterilizan el interior de vehículos desocupados.

Vale la pena señalar que no todas las longitudes de onda UV son iguales. Los rayos UV-A y UV-B, los tipos que recibimos aquí en la Tierra por cortesía del Sol, tienen usos importantes, pero el raro UV-C es la luz ultravioleta preferida para purificar el aire y el agua y para inactivar microbios . Estos solo pueden generarse a través de procesos creados por el hombre.

“La luz UV-C en el rango de 260 – 285 nm más relevante para las tecnologías de desinfección actuales también es dañina para la piel humana, por lo que por ahora se usa principalmente en aplicaciones donde no hay nadie presente en el momento de la desinfección”, dijo Zollner. De hecho, la Organización Mundial de la Salud advierte contra el uso de lámparas de desinfección ultravioleta para desinfectar las manos u otras áreas de la piel; incluso una breve exposición a la luz UV-C puede causar quemaduras y lesiones oculares.

Antes de que la pandemia COVID-19 ganara impulso mundial, los científicos de materiales en SSLEEC ya estaban trabajando en el avance de la tecnología LED UV-C. Esta área del espectro electromagnético es una frontera relativamente nueva para la iluminación de estado sólido; La luz UV-C se genera más comúnmente a través de lámparas de vapor de mercurio y, según Zollner, “se necesitan muchos avances tecnológicos para que el LED UV alcance su potencial en términos de eficiencia, costo, confiabilidad y vida útil”.

En una carta publicada en la revista ACS Photonics , los investigadores informaron sobre un método más elegante para fabricar LED de ultravioleta profundo (UV-C) de alta calidad que implica depositar una película del nitruro de aluminio y galio (AlGaN) de aleación de semiconductores en un sustrato de carburo de silicio (SiC): una desviación del sustrato de zafiro más utilizado.

Según Zollner, el uso de carburo de silicio como sustrato permite un crecimiento más eficiente y rentable del material semiconductor UV-C de alta calidad que el zafiro. Esto, explicó, se debe a lo cerca que coinciden las estructuras atómicas de los materiales.

“Como regla general, cuanto más estructuralmente similar (en términos de estructura de cristal atómico) el sustrato y la película son entre sí, más fácil es lograr una alta calidad del material”, dijo. Cuanto mejor sea la calidad, mejor será la eficiencia y el rendimiento del LED. El zafiro es estructuralmente diferente, y la producción de material sin defectos y desalineaciones a menudo requiere pasos adicionales complicados. El carburo de silicio no es una combinación perfecta, dijo Zollner, pero permite una alta calidad sin la necesidad de métodos costosos y adicionales.

Además, el carburo de silicio es mucho menos costoso que el sustrato de nitruro de aluminio “ideal”, lo que lo hace más amigable con la producción en masa, según Zollner.

La desinfección de agua portátil y de acción rápida fue una de las principales aplicaciones que los investigadores tenían en mente al desarrollar su tecnología LED UV-C; la durabilidad, confiabilidad y factor de forma pequeño de los diodos cambiarían el juego en áreas menos desarrolladas del mundo donde no hay agua limpia disponible.

La aparición de la pandemia de COVID-19 ha agregado otra dimensión. A medida que el mundo corre para encontrar vacunas, terapias y curas para la enfermedad, la desinfección, la descontaminación y el aislamiento son las pocas armas que tenemos para defendernos, y las soluciones deberán implementarse en todo el mundo. Además de UV-C para fines de saneamiento del agua, la luz UV-C podría integrarse en sistemas que se encienden cuando no hay nadie presente, dijo Zollner.

“Esto proporcionaría una forma conveniente, económica y libre de químicos para desinfectar los espacios públicos, minoristas, personales y médicos”, dijo.

Por el momento, sin embargo, es un juego de paciencia, ya que Zollner y sus colegas esperan la pandemia. La investigación en la UC Santa Bárbara se ha ralentizado para minimizar el contacto de persona a persona.

“Nuestros próximos pasos, una vez que se reanuden las actividades de investigación en UCSB, es continuar nuestro trabajo para mejorar nuestra plataforma AlGaN / SiC para producir los emisores de luz UV-C más eficientes del mundo”, dijo.

Si quieres recibir en tu celular esta y otras informaciones

emisiones de gei

, ,

Química Verde: Producción de Plásticos amigables con el medio ambiente

química verde

Una nueva forma de sintetizar polímeros, llamada síntesis hidrotermal, se puede utilizar para producir materiales importantes de alto rendimiento de una manera que sea mucho mejor para el medio ambiente.  a través de la química verde las toxinas peligrosas que generalmente deben usarse para producir estos polímeros pueden sustituirse por agua.

Muchos materiales que usamos todos los días no son sostenibles. Algunos son dañinos para las plantas o los animales, otros contienen elementos raros que no siempre estarán disponibles tan fácilmente como lo están hoy. Una gran esperanza para el futuro es lograr diferentes propiedades del material mediante el uso de nuevas moléculas orgánicas. 

Los materiales orgánicos de alto rendimiento que contienen solo elementos comunes como el carbono, el hidrógeno o el oxígeno podrían resolver nuestro problema de recursos, pero su preparación no suele ser ecológica. A menudo se utilizan sustancias muy tóxicas durante la síntesis de dichos materiales, incluso si el producto final en sí no es tóxico.

En TU Wien se adopta un enfoque diferente: en el grupo de investigación de materiales orgánicos de alto rendimiento, dirigido por la profesora Miriam Unterlass de la Facultad de Química Técnica de TU Wien, se emplea un método sintético completamente diferente. En lugar de aditivos tóxicos, solo se usa agua caliente. Ahora se ha logrado un avance decisivo: se podrían generar dos clases importantes de polímeros utilizando el nuevo proceso, un paso importante hacia la aplicación industrial del nuevo método. Los resultados ya se han publicado en la reconocida revista Angewandte Chemie .

Alta presión y alta temperatura para aplicar la química Verde.

“Estamos investigando los llamados procesos sintéticos hidrotermales”, dice Miriam Unterlass. “Estamos trabajando a alta presión y alta temperatura en el orden de 17 bares y 200 ° C. Como resultado, en condiciones tan extremas es posible evitar el uso de solventes tóxicos que de otro modo serían necesarios para producir estos polímeros. El término La “química verde” se refiere a aquellos métodos que permiten hacer no solo los productos finales sino también los procesos sintéticos en la industria química más amigables con el medio ambiente.

Ya hace varios años, Miriam Unterlass logró los primeros resultados positivos con esta tecnología. “Tuvimos éxito, por ejemplo, en la producción de tintes orgánicos o poliimidas, plásticos que son indispensables en las industrias de la aviación y la electrónica. Esto también generó un gran interés de la industria”, dice Unterlass. “Pero ahora hemos dado un paso importante: pudimos sintetizar diferentes ejemplos de polímeros de dos clases muy interesantes de plásticos: polibencimidazoles y polímeros de pirron”.

Nuevos procesos de preparación para superplásticos.

Los polibencimidazoles se usan, por ejemplo, hoy en día como membranas en las celdas de combustible, ya que son resistentes a los ácidos incluso a altas temperaturas y también pueden conducir protones. Las fibras de polibencimidazol también se encuentran en la ropa ignífuga, como los trajes protectores de los bomberos. “Eso ya muestra que son súper plásticos reales”, dice Unterlass.

Los polímeros de pirron, por otro lado, tienen propiedades electrónicas particularmente interesantes además de su excelente estabilidad. Por lo tanto, son adecuados para aplicaciones como transistores de efecto de campo o como material de electrodo potente y altamente resistente en baterías.

“El hecho de que estos polímeros se puedan preparar utilizando nuestro proceso hidrotérmico es notable, ya que en condiciones normales las reacciones químicas para generar estos plásticos son sensibles al agua”, dice Miriam Unterlass. “Esto muestra cuán prometedor es nuestro método para una amplia gama de aplicaciones”.

El nuevo método de fabricación para las dos nuevas clases de materiales ya ha sido patentado, con la ayuda de la investigación y el soporte de transferencia de TU Wien. El análisis electroquímico de los productos se realizó en cooperación con el Imperial College de Londres.

Si quieres recibir en tu celular esta y otras informaciones

emisiones de gei

, ,

Nuevo Plástico que se Degrada más Rapido

nuevo plástico

Para abordar la contaminación plástica que afecta a los mares y vías fluviales del mundo, los químicos de la Universidad de Cornell han desarrollado un nuevo plástico que puede degradarse por la radiación ultravioleta, según una investigación publicada en el Journal of the American Chemical Society .

“Hemos creado un nuevo plástico que tiene las propiedades mecánicas requeridas por los artes de pesca comerciales. Si finalmente se pierde en el medio ambiente acuático, este material puede degradarse en una escala de tiempo realista”, dijo el investigador principal Bryce Lipinski, un candidato a doctorado en el laboratorio de Geoff Coates, profesor de química y biología química en la Universidad de Cornell. “Este material podría reducir la acumulación persistente de plástico en el medio ambiente”.

La pesca comercial contribuye a aproximadamente la mitad de todos los desechos plásticos flotantes que terminan en los océanos, dijo Lipinski. Las redes y cuerdas de pesca están hechas principalmente de tres tipos de polímeros: polipropileno isotáctico, polietileno de alta densidad y nylon-6,6, ninguno de los cuales se degrada fácilmente.

“Si bien la investigación de plásticos degradables ha recibido mucha atención en los últimos años”, dijo, “obtener un material con la resistencia mecánica comparable al plástico comercial sigue siendo un desafío difícil”.

Coates y su equipo de investigación han pasado los últimos 15 años desarrollando este plástico llamado óxido de polipropileno isotáctico o iPPO. Si bien su descubrimiento original fue en 1949, la resistencia mecánica y la fotodegradación de este material eran desconocidas antes de este trabajo reciente. La alta isotacticidad (regularidad del encadenamiento) y la longitud de la cadena de polímero de su material lo distingue de su predecesor histórico y proporciona su resistencia mecánica.

Lipinski señaló que si bien iPPO es estable en el uso normal, eventualmente se descompone cuando se expone a la luz UV. El cambio en la composición del plástico es evidente en el laboratorio, pero “visualmente, puede parecer que no ha cambiado mucho durante el proceso”, dijo.

La tasa de degradación depende de la intensidad de la luz, pero en condiciones de laboratorio, dijo, las longitudes de la cadena de polímero se degradaron a un cuarto de su longitud original después de 30 días de exposición.

Finalmente, Lipinski y otros científicos quieren no dejar rastros del polímero en el medio ambiente. Señala que existe un precedente literario para la biodegradación de pequeñas cadenas de iPPO que podría hacer que desaparezca, pero los esfuerzos continuos apuntan a probar esto.

Si quieres recibir en tu celular esta y otras informaciones

emisiones de gei

,

Fibra Óptica Para Una Energía Renovable mas Segura

Fibra óptica

Resulta que los cables de fibra óptica pueden ser sensores científicos increíblemente útiles. Los investigadores del Laboratorio Nacional Lawrence Berkeley (Berkeley Lab) los han estudiado para su uso en el secuestro de carbono, el mapeo de aguas subterráneas, la detección de terremotos y el monitoreo del deshielo del permafrost ártico.

Ahora se les han otorgado nuevas subvenciones para desarrollar fibra óptica para dos usos novedosos: monitoreo de operaciones eólicas en alta mar y almacenamiento subterráneo de gas natural.

“Un cable de fibra tiene un núcleo de vidrio que le permite enviar una señal óptica a la velocidad de la luz; cuando haya vibraciones, tensiones o tensiones o cambios en la temperatura del material que se está monitoreando, esa información será transportada en la señal de luz que se dispersa “, dijo el científico de Berkeley Lab, Yuxin Wu, quien lidera ambos proyectos.

La Comisión de Energía de California otorgó a Berkeley Lab $ 2 millones para el proyecto eólico marino y $ 1.5 millones para el proyecto de gas natural. Ambos proyectos están en colaboración con UC Berkeley, y para el proyecto de gas natural, Berkeley Lab también colaborará con PG&E, Schlumberger y C-FER Technologies (una compañía canadiense), para llevar a cabo las pruebas.

Desde fallas en la caja de cambios hasta movimientos de ballenas jorobadas

Europa está a la vanguardia del desarrollo eólico marino. Otras partes del mundo solo se encuentran en las primeras etapas de comercialización, pero está creciendo rápidamente, incluso en los EE. UU., Donde el Departamento de Energía (DOE) ha estado apoyando el desarrollo de la tecnología. Los recursos eólicos marinos en los EE. UU. Son abundantes y tienen el potencial de proporcionar casi el doble de la cantidad total de electricidad generada actualmente en los EE. UU., Según un informe del DOE de 2016.

Una de las ventajas de la energía eólica marina para los EE. UU. Es que el recurso está cerca de densas poblaciones costeras. Por lo tanto, la transmisión de energía es un desafío menor en comparación con otras fuentes de energía renovables, como los parques eólicos y solares en tierra, que generalmente se encuentran más lejos de los centros de población debido a la disponibilidad y el costo de los bienes inmuebles.

Frente a la costa de California, el suelo oceánico cae abruptamente, lo que hace que las turbinas eólicas flotantes, que están atadas al fondo del océano por cadenas de amarre, a diferencia de las turbinas eólicas offshore convencionales de “fondo fijo”, son la única opción viable. Pero esta tecnología enfrenta varios obstáculos, incluyendo cómo hacer el mantenimiento y las operaciones en instalaciones remotas en el océano económicamente y cómo monitorear si los peligros como terremotos o condiciones climáticas extremas interrumpen las operaciones.

Aquí es donde entran los cables de fibra óptica.

“Uno de los componentes más caros de una turbina eólica es la caja de cambios; también tienden a ser la parte más vulnerable a fallas”, dijo Wu, quien también es jefe del Departamento de Geofísica de Berkeley Lab. “A menudo, antes de que fallen, producen vibraciones anormales o calor excesivo debido a una fricción aumentada o irregular. Tenemos la intención de utilizar cables de fibra óptica para controlar la señal vibratoria, de tensión y de temperatura de la caja de engranajes, a fin de determinar dónde están ocurriendo los problemas”.

Envolver los cables de fibra óptica alrededor de toda la caja de cambios puede proporcionar un mapa 3D de cambios con resolución a escala milimétrica. “Podría ayudar a identificar problemas con la caja de cambios en una etapa temprana, lo que desencadenaría un manejo de emergencia, antes de una falla catastrófica que causa la pérdida de toda la turbina”, dijo Wu.

Además, Wu dijo que el proyecto tiene la intención de explorar cómo los cables de fibra óptica se pueden usar para detectar la actividad de los mamíferos marinos. La sensibilidad de la señal de fibra podría permitir la diferenciación entre, digamos, olas rompientes y una manada de ballenas nadando.

“El desarrollo ambientalmente sostenible de la energía eólica marina es crítico”, dijo. “Con un gran parque eólico en alta mar, habría muchas de estas líneas de amarre que aseguran las estructuras de la turbina al fondo del océano. Si una ballena jorobada nada, ¿cuáles son los impactos de estas líneas de amarre en sus actividades? ¿Generarán las ballenas vibraciones únicas? ¿Qué señales pueden ser captadas por los sensores de fibra óptica? Si podemos rastrear las señales de una ballena nadando, nos permitirá evaluar si la turbina eólica marina impacta a los mamíferos marinos y de qué manera.

Wu agregó que está buscando aprender más sobre las ballenas y otros mamíferos marinos de los biólogos marinos y también está buscando un socio para colaborar para probar los sensores en el océano.

Hacer reservorios de gas subterráneos más seguros

Del mismo modo, Wu y sus socios de investigación esperan utilizar cables de fibra óptica para monitorear los pozos de los depósitos subterráneos de almacenamiento de gas natural. El pozo se utiliza para inyectar y extraer gas de grandes depósitos subterráneos de almacenamiento. Como cualquier tubería, estas perforaciones se degradan y corroen con el tiempo. Se concluyó que la fuga masiva de gas en Aliso Canyon en 2016, en la que miles de familias tuvieron que evacuar sus hogares, fue causada por daños por corrosión del pozo.

Por lo tanto, la integridad del pozo es de suma importancia para el almacenamiento seguro de gas natural en el subsuelo. Actualmente se monitorea principalmente utilizando herramientas que son intrusivas, caras e incapaces de proporcionar datos frecuentes en tiempo real. “Es difícil predecir la trayectoria de degradación del pozo con los escasos datos generados por los métodos tradicionales. Tener conjuntos de datos de mayor frecuencia que cubran todo el pozo es clave para proporcionar una alerta temprana de posibles fallas”, dijo Wu.

En el nuevo proyecto financiado por CEC, Berkeley Lab trabajará con UC Berkeley, PG&E, Schlumberger y C-FER para probar un nuevo conjunto de tecnologías para monitoreo autónomo en tiempo real utilizando dos métodos, uno basado en tensión distribuida, vibración y detección de temperatura en cables de fibra óptica y otros utilizando reflectometría de onda electromagnética.

EM-TDR (o reflectometría de dominio de tiempo electromagnético) es similar a la tecnología de fibra óptica, excepto que utiliza ondas electromagnéticas de mayor longitud de onda en lugar de luz visible (también una onda electromagnética pero a una longitud de onda muy corta) como señales. “EM-TDR envía ondas electromagnéticas a un material conductivo electrónicamente, y cuando hay un cambio debido a daños, como la corrosión, recibes una señal EM que puede ayudarte a identificar la corrosión u otras degradaciones”, dijo Wu.

Y debido a que el pozo está hecho de acero, que es eléctricamente conductor, no será necesario instalar ningún equipo de fondo de pozo. Por lo tanto, EM-TDR es muy fácil de implementar y puede usarse en muchas circunstancias que impiden el uso de otros tipos de sensores. Por otro lado, EM-TDR sigue siendo una tecnología de etapa temprana; Este nuevo proyecto permitirá más pruebas y desarrollo.

Tanto para los proyectos eólicos marinos como para el gas natural, el desafío científico, dijo Wu, es optimizar el diseño y la sensibilidad de la tecnología y desarrollar tecnologías informáticas de vanguardia en tiempo real. “Además de utilizar sistemas comerciales, nuestro equipo está desarrollando nuevos interrogadores de fibra que nos permitirán no solo obtener los datos en bruto originales, sino también jugar con la física para diseñar mejor un sistema que pueda darnos la señal más sensible que queremos, “Además, desarrollaremos métodos de cómputo de borde basados ​​en aprendizaje automático para convertir los datos sin procesar en inteligencia procesable rápidamente. Esta es la clave para el monitoreo en tiempo real”.

Si quieres recibir en tu celular esta y otras informaciones

emisiones de gei

Call Now Button